Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Soft comput ; : 1-11, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2312867

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) occurred at the end of 2019, and it has continued to be a source of misery for millions of people and companies well into 2020. There is a surge of concern among all persons, especially those who wish to resume in-person activities, as the globe recovers from the epidemic and intends to return to a level of normalcy. Wearing a face mask greatly decreases the likelihood of viral transmission and gives a sense of security, according to studies. However, manually tracking the execution of this regulation is not possible. The key to this is technology. We present a deep learning-based system that can detect instances of improper use of face masks. A dual-stage convolutional neural network architecture is used in our system to recognize masked and unmasked faces. This will aid in the tracking of safety breaches, the promotion of face mask use, and the maintenance of a safe working environment. In this paper, we propose a variant of a multi-face detection model which has the potential to target and identify a group of people whether they are wearing masks or not.

2.
Soft comput ; : 1-17, 2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2246215

ABSTRACT

COVID-19 is a positive-sense single-stranded RNA virus caused by a strain of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several noteworthy variants of SARS-CoV-2 were declared by WHO as Alpha, Beta, Gamma, Delta, and Omicron. Till 13/Dec/2022, it has caused 6.65 million death tolls, and over 649 million confirmed positive cases. Based on the convolutional neural network (CNN), this study first proposes a ten-layer CNN as the backbone model. Then, the exponential linear unit (ELU) is introduced to replace ReLU, and the traditional convolutional block is now transformed into conv-ELU. Finally, an ELU-based CNN (ELUCNN) model is proposed for COVID-19 diagnosis. Besides, the MDA strategy is used to enhance the size of the training set. We develop a mobile app integrating ELUCNN, and this web app is run on a client-server modeled structure. Ten runs of the tenfold cross-validation experiment show our model yields a sensitivity of 94.41 ± 0.98 , a specificity of 94.84 ± 1.21 , an accuracy of 94.62 ± 0.96 , and an F1 score of 94.61 ± 0.95 . The ELUCNN model and mobile app are effective in COVID-19 diagnosis and give better results than 14 state-of-the-art COVID-19 diagnosis models concerning accuracy.

3.
Soft Computing ; : 1-11, 2022.
Article in English | EuropePMC | ID: covidwho-2147100

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) occurred at the end of 2019, and it has continued to be a source of misery for millions of people and companies well into 2020. There is a surge of concern among all persons, especially those who wish to resume in-person activities, as the globe recovers from the epidemic and intends to return to a level of normalcy. Wearing a face mask greatly decreases the likelihood of viral transmission and gives a sense of security, according to studies. However, manually tracking the execution of this regulation is not possible. The key to this is technology. We present a deep learning-based system that can detect instances of improper use of face masks. A dual-stage convolutional neural network architecture is used in our system to recognize masked and unmasked faces. This will aid in the tracking of safety breaches, the promotion of face mask use, and the maintenance of a safe working environment. In this paper, we propose a variant of a multi-face detection model which has the potential to target and identify a group of people whether they are wearing masks or not.

4.
Diagnostics (Basel) ; 12(11)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116064

ABSTRACT

The majority of people in the modern biosphere struggle with depression as a result of the coronavirus pandemic's impact, which has adversely impacted mental health without warning. Even though the majority of individuals are still protected, it is crucial to check for post-corona virus symptoms if someone is feeling a little lethargic. In order to identify the post-coronavirus symptoms and attacks that are present in the human body, the recommended approach is included. When a harmful virus spreads inside a human body, the post-diagnosis symptoms are considerably more dangerous, and if they are not recognised at an early stage, the risks will be increased. Additionally, if the post-symptoms are severe and go untreated, it might harm one's mental health. In order to prevent someone from succumbing to depression, the technology of audio prediction is employed to recognise all the symptoms and potentially dangerous signs. Different choral characters are used to combine machine-learning algorithms to determine each person's mental state. Design considerations are made for a separate device that detects audio attribute outputs in order to evaluate the effectiveness of the suggested technique; compared to the previous method, the performance metric is substantially better by roughly 67%.

5.
IEEE Sens J ; 22(18): 17573-17582, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2037820

ABSTRACT

(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.

6.
Front Public Health ; 9: 782203, 2021.
Article in English | MEDLINE | ID: covidwho-1627310

ABSTRACT

The advancement of technology in medical equipment has significantly improved healthcare services. However, failures in upkeeping reliability, availability, and safety affect the healthcare services quality and significant impact can be observed in operations' expenses. The effective and comprehensive medical equipment assessment and monitoring throughout the maintenance phase of the asset life cycle can enhance the equipment reliability, availability, and safety. The study aims to develop the prioritisation assessment and predictive systems that measure the priority of medical equipment's preventive maintenance, corrective maintenance, and replacement programmes. The proposed predictive model is constructed by analysing features of 13,352 medical equipment used in public healthcare clinics in Malaysia. The proposed system comprises three stages: prioritisation analysis, model training, and predictive model development. In this study, we proposed 16 combinations of novel features to be used for prioritisation assessment and prediction of preventive maintenance, corrective maintenance, and replacement programme. The modified k-Means algorithm is proposed during the prioritisation analysis to automatically distinguish raw data into three main clusters of prioritisation assessment. Subsequently, these clusters are fed into and tested with six machine learning algorithms for the predictive prioritisation system. The best predictive models for medical equipment's preventive maintenance, corrective maintenance, and replacement programmes are selected among the tested machine learning algorithms. Findings indicate that the Support Vector Machine performs the best in preventive maintenance and replacement programme prioritisation predictive systems with the highest accuracy of 99.42 and 99.80%, respectively. Meanwhile, K-Nearest Neighbour yielded the highest accuracy in corrective maintenance prioritisation predictive systems with 98.93%. Based on the promising results, clinical engineers and healthcare providers can widely adopt the proposed prioritisation assessment and predictive systems in managing expenses, reporting, scheduling, materials, and workforce.


Subject(s)
Machine Learning , Support Vector Machine , Algorithms , Health Services , Reproducibility of Results
7.
Front Public Health ; 9: 726144, 2021.
Article in English | MEDLINE | ID: covidwho-1376723

ABSTRACT

Aim: Coronavirus disease 2019 (COVID-19) is a form of disease triggered by a new strain of coronavirus. This paper proposes a novel model termed "deep fractional max pooling neural network (DFMPNN)" to diagnose COVID-19 more efficiently. Methods: This 12-layer DFMPNN replaces max pooling (MP) and average pooling (AP) in ordinary neural networks with the help of a novel pooling method called "fractional max-pooling" (FMP). In addition, multiple-way data augmentation (DA) is employed to reduce overfitting. Model averaging (MA) is used to reduce randomness. Results: We ran our algorithm on a four-category dataset that contained COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis (SPT), and healthy control (HC). The 10 runs on the test set show that the micro-averaged F1 (MAF) score of our DFMPNN is 95.88%. Discussions: This proposed DFMPNN is superior to 10 state-of-the-art models. Besides, FMP outperforms traditional MP, AP, and L2-norm pooling (L2P).


Subject(s)
COVID-19 , Pneumonia , Algorithms , Humans , Neural Networks, Computer , SARS-CoV-2
8.
Pattern Recognit ; 122: 108255, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1370661

ABSTRACT

COVID-19 has emerged as one of the deadliest pandemics that has ever crept on humanity. Screening tests are currently the most reliable and accurate steps in detecting severe acute respiratory syndrome coronavirus in a patient, and the most used is RT-PCR testing. Various researchers and early studies implied that visual indicators (abnormalities) in a patient's Chest X-Ray (CXR) or computed tomography (CT) imaging were a valuable characteristic of a COVID-19 patient that can be leveraged to find out virus in a vast population. Motivated by various contributions to open-source community to tackle COVID-19 pandemic, we introduce SARS-Net, a CADx system combining Graph Convolutional Networks and Convolutional Neural Networks for detecting abnormalities in a patient's CXR images for presence of COVID-19 infection in a patient. In this paper, we introduce and evaluate the performance of a custom-made deep learning architecture SARS-Net, to classify and detect the Chest X-ray images for COVID-19 diagnosis. Quantitative analysis shows that the proposed model achieves more accuracy than previously mentioned state-of-the-art methods. It was found that our proposed model achieved an accuracy of 97.60% and a sensitivity of 92.90% on the validation set.

9.
Arab J Sci Eng ; : 1-18, 2021 Aug 09.
Article in English | MEDLINE | ID: covidwho-1349363

ABSTRACT

Coronavirus (COVID-19) is an epidemic that is rapidly spreading and causing a severe healthcare crisis resulting in more than 40 million confirmed cases across the globe. There are many intensive studies on AI-based technique, which is time consuming and troublesome by considering heavyweight models in terms of more training parameters and memory cost, which leads to higher time complexity. To improve diagnosis, this paper is aimed to design and establish a unique lightweight deep learning-based approach to perform multi-class classification (normal, COVID-19, and pneumonia) and binary class classification (normal and COVID-19) on X-ray radiographs of chest. This proposed CNN scheme includes the combination of three CBR blocks (convolutional batch normalization ReLu) with learnable parameters and one global average pooling (GP) layer and fully connected layer. The overall accuracy of the proposed model achieved 98.33% and finally compared with the pre-trained transfer learning model (DenseNet-121, ResNet-101, VGG-19, and XceptionNet) and recent state-of-the-art model. For validation of the proposed model, several parameters are considered such as learning rate, batch size, number of epochs, and different optimizers. Apart from this, several other performance measures like tenfold cross-validation, confusion matrix, evaluation metrics, sarea under the receiver operating characteristics, kappa score and Mathew's correlation, and Grad-CAM heat map have been used to assess the efficacy of the proposed model. The outcome of this proposed model is more robust, and it may be useful for radiologists for faster diagnostics of COVID-19.

10.
Arab J Sci Eng ; : 1-13, 2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1281340

ABSTRACT

Virus attacks have had devastating effects on mankind. The prominent viruses such as Ebola virus (2012), SARS-CoV or Severe acute respiratory syndrome, Middle East respiratory syndrome-related coronavirus called as the MERS (EMC/2012), Spanish flu (H1N1 virus-1918) and the most recent COVID-19(SARS-CoV-2) are the ones that have created a difficult situation for the survival of the human race. Currently, throughout the world, a global pandemic situation has put economy, livelihood and human existence in a very pathetic situation. Most of the above-mentioned viruses exhibit some similar characteristics and genetic pattern. Analysing such characteristics and genetic pattern can help the researchers to get a deeper insight into the viruses and helps in finding appropriate medicine or cure. To address these issues, this paper proposes an experimental analysis of the above-mentioned viruses data using correlation methods. The virus data considered for the experimental analysis include the distribution of various amino acids, protein sequences, 3D modelling of viruses, pairwise alignment of proteins that comprise the DNA genome of the viruses. Furthermore, this comparative analysis can be used by the researchers and organizations like WHO(World Health Organization), computational biologists, genetic engineers to frame a layout for studying the DNA sequence distribution, percentage of GC (guanine-cytosine) protein which determines the heat stability of viruses. We have used the Biopython to illustrate the gene study of prominent viruses and have derived results and insights in the form of 3D modelling. The experimental results are more promising with an accuracy rate of 96% in overall virus relationship calculation.

11.
Pattern Recognit ; 117: 107999, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1201390

ABSTRACT

The early detection of COVID-19 is a challenging task due to its deadly spreading nature and existing fear in minds of people. Speech-based detection can be one of the safest tools for this purpose as the voice of the suspected can be easily recorded. The Mel Frequency Cepstral Coefficient (MFCC) analysis of speech signal is one of the oldest but potential analysis tools. The performance of this analysis mainly depends on the use of conversion between normal frequency scale to perceptual frequency scale and the frequency range of the filters used. Traditionally, in speech recognition, these values are fixed. But the characteristics of speech signals vary from disease to disease. In the case of detection of COVID-19, mainly the coughing sounds are used whose bandwidth and properties are quite different from the complete speech signal. By exploiting these properties the efficiency of the COVID-19 detection can be improved. To achieve this objective the frequency range and the conversion scale of frequencies have been suitably optimized. Further to enhance the accuracy of detection performance, speech enhancement has been carried out before extraction of features. By implementing these two concepts a new feature called COVID-19 Coefficient (C-19CC) is developed in this paper. Finally, the performance of these features has been compared.

12.
Mach Vis Appl ; 32(1): 14, 2021.
Article in English | MEDLINE | ID: covidwho-1060597

ABSTRACT

Till August 17, 2020, COVID-19 has caused 21.59 million confirmed cases in more than 227 countries and territories, and 26 naval ships. Chest CT is an effective way to detect COVID-19. This study proposed a novel deep learning model that can diagnose COVID-19 on chest CT more accurately and swiftly. Based on traditional deep convolutional neural network (DCNN) model, we proposed three improvements: (i) We introduced stochastic pooling to replace average pooling and max pooling; (ii) We combined conv layer with batch normalization layer and obtained the conv block (CB); (iii) We combined dropout layer with fully connected layer and obtained the fully connected block (FCB). Our algorithm achieved a sensitivity of 93.28% ± 1.50%, a specificity of 94.00% ± 1.56%, and an accuracy of 93.64% ± 1.42%, in identifying COVID-19 from normal subjects. We proved using stochastic pooling yields better performance than average pooling and max pooling. We compared different structure configurations and proved our 3CB + 2FCB yields the best performance. The proposed model is effective in detecting COVID-19 based on chest CT images.

13.
Cognit Comput ; : 1-17, 2021 Jan 18.
Article in English | MEDLINE | ID: covidwho-1046675

ABSTRACT

COVID-19 is an ongoing pandemic disease. To make more accurate diagnosis on COVID-19 than existing approaches, this paper proposed a novel method combining DenseNet and optimization of transfer learning setting (OTLS) strategy. Preprocessing was used to enhance, crop, and resize the collected chest CT images. Data augmentation method was used to increase the size of training set. A composite learning factor (CLF) was employed which assigned different learning factor to three types of layers: frozen layers, middle layers, and new layers. Meanwhile, the OTLS strategy was proposed. Finally, precomputation method was utilized to reduce RAM storage and accelerate the algorithm. We observed that optimization setting "201-IV" can achieve the best performance by proposed OTLS strategy. The sensitivity, specificity, precision, and accuracy of our proposed method were 96.35 ± 1.07, 96.25 ± 1.16, 96.29 ± 1.11, and 96.30 ± 0.56, respectively. The proposed DenseNet-OTLS method achieved better performances than state-of-the-art approaches in diagnosing COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL